Image Statistical Frameworks for Digital Image
نویسنده
چکیده
IMAGE STATISTICAL FRAMEWORKS FOR DIGITAL IMAGE FORENSICS by Patchara Sutthiwan The advances of digital cameras, scanners, printers, image editing tools, smartphones, tablet personal computers as well as high-speed networks have made a digital image a conventional medium for visual information. Creation, duplication, distribution, or tampering of such a medium can be easily done, which calls for the necessity to be able to trace back the authenticity or history of the medium. Digital image forensics is an emerging research area that aims to resolve the imposed problem and has grown in popularity over the past decade. On the other hand, anti-forensics has emerged over the past few years as a relatively new branch of research, aiming at revealing the weakness of the forensic technology. These two sides of research move digital image forensic technologies to the next higher level. Three major contributions are presented in this dissertation as follows. First, an effective multi-resolution image statistical framework for digital image forensics of passive-blind nature is presented in the frequency domain. The image statistical framework is generated by applying Markovian rake transform to image luminance component. Markovian rake transform is the applications of Markov process to difference arrays which are derived from the quantized block discrete cosine transform 2-D arrays with multiple block sizes. The efficacy and universality of the framework is then evaluated in two major applications of digital image forensics: 1) digital image tampering detection; 2) classification of computer graphics and photographic images. Second, a simple yet effective anti-forensic scheme is proposed, capable of obfuscating double JPEG compression artifacts, which may vital information for image forensics, for instance, digital image tampering detection. Shrink-and-zoom (SAZ) attack, the proposed scheme, is simply based on image resizing and bilinear interpolation. The effectiveness of SAZ has been evaluated over two promising double JPEG compression schemes and the outcome reveals that the proposed scheme is effective, especially in the cases that the first quality factor is lower than the second quality factor. Third, an advanced textural image statistical framework in the spatial domain is proposed, utilizing local binary pattern (LBP) schemes to model local image statistics on various kinds of residual images including higher-order ones. The proposed framework can be implemented either in singleor multi-resolution setting depending on the nature of application of interest. The efficacy of the proposed framework is evaluated on two forensic applications: 1) steganalysis with emphasis on HUGO (Highly Undetectable Steganography), an advanced steganographic scheme embedding hidden data in a content-adaptive manner locally into some image regions which are difficult for modeling image statics; 2) image recapture detection (IRD). The outcomes of the evaluations suggest that the proposed framework is effective, not only for detecting local changes which is in line with the nature of HUGO, but also for detecting global difference (the nature of IRD). IMAGE STATISTICAL FRAMEWORKS FOR DIGITAL IMAGE FORENSICS by Patchara Sutthiwan A Dissertation Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering Department of Electrical and Computer Engineering
منابع مشابه
A Novel Image Encryption Model Based on Hybridization of Genetic Algorithm, Chaos Theory and Lattice Map
Encryption is an important issue in information security which is usually provided using a reversible mathematical model. Digital image as a most frequently used digital product needs special encryption algorithms. This paper presents a new encryption algorithm high security for digital gray images using genetic algorithm and Lattice Map function. At the first the initial value of Logistic Map ...
متن کاملProcessing Digital Image for Measurement of Crack Dimensions in Concrete
The elements of the concrete structure are most frequently affected by cracking. Crack detection is essential to ensure safety and performance during its service life. Cracks do not have a regular shape, in order to achieve the exact dimensions of the crack; the general mathematical formulae are by no means applicable. The authors have proposed a new method which aims to measure the crack dimen...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملOptimization of Dose and Image Quality in Full-fiand Computed Radiography Systems for Common Digital Radiographic Examinations
IntroductionA fine balance of image quality and radiation dose can be achieved by optimization to minimize stochastic and deterministic effects. This study aimed in ensuring that images of acceptable quality for common radiographic examinations in digital imaging were produced without causing harmful effects. Materials and MethodsThe study was conducted in three phases. The pre-optimization inv...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کامل